Math, asked by Nehadevarakonda, 4 months ago

LIMITS: lim tends to 7 then: ((x^5)-(7^5))/((x^2)-(7^2)).​

Answers

Answered by Asterinn
15

 \implies \[ \lim \limits_{x\to7}  \dfrac{ \sf {x}^{5}  -  {7}^{5} }{ \sf {x}^{2}  -  {7}^{2} }  \]

Now , if we put x = 7 then we will get 0/0 form :-

  \longrightarrow \: \dfrac{ \sf {x}^{5}  -  {7}^{5} }{ \sf {x}^{2}  -  {7}^{2} }  \] = \dfrac{ \sf {7}^{5}  -  {7}^{5} }{ \sf {7}^{2}  -  {7}^{2} }  \]

\longrightarrow  \dfrac{ \sf {7}^{5}  -  {7}^{5} }{ \sf {7}^{2}  -  {7}^{2} }  \] =  \dfrac{0}{0}

So , now we will apply L'hospital rule to solve the given problem.

We will differentiate numerator and denominator seperately.

\implies \[ \lim \limits_{x\to7}  \dfrac{ \sf5 {x}^{4}  -  0 }{ \sf2 {x}  -  0} \]

\implies \[ \lim \limits_{x\to7}  \dfrac{ \sf5 {x}^{4}   }{ \sf2 {x} } \]

\implies \dfrac{5}{2}  \times  \[ \lim \limits_{x\to7}  { \sf {(x) }^{4 - 1}  } \]

\implies \dfrac{5}{2}  \times  \[ \lim \limits_{x\to7}  { \sf {x }^{3}  } \]

\implies \dfrac{5}{2}  \times   {7}^{3}

\implies \dfrac{5}{2}   \times 343

\implies \dfrac{1715}{2}    = 857.5

Similar questions