Math, asked by awdheshcghs, 7 months ago

limits tends to 0 √1+x+x square - √x+1 / 2x square​

Answers

Answered by aryan073
4

Answer::

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge{\underline{\underline{{\pink{\sf \:Required \: Answer }}}}}

\pink\bigstar\sf{lim_x \to 0  \: \: \dfrac{\sqrt(1+x+x^2)-(\sqrt( x+1)}{2x^2}}

 \:  \:  \:  \:  \:  \implies \displaystyle  \boxed{\rm{\clubsuit\ rationalize \: the \: equation\clubsuit}}

\dashrightarrow\sf{lim_x \to 0 \: \: \: \dfrac{(\sqrt(1+x+x^2))-(\sqrt (x+1))}{2x^2} \times \dfrac{(\sqrt( 1+x+x^2)+(\sqrt( x+1)}{(\sqrt( 1+x+x^2)+(\sqrt (x+1)}}

\dashrightarrow\sf{lim_x \to 0  \: \: \: \dfrac{(1+x+x^2)-(x+1)}{x^2 \times (\sqrt (1+x+x^2)+(\sqrt( x+1)}}

\dashrightarrow\sf{lim_x \to 0 \: \: \: \dfrac{(1+x+x^2-x-1)}{x^2 \times(\sqrt (1+x+x^2)+(\sqrt (x+1)}}

\dashrightarrow\sf{lim_x \to 0\: \: \: \dfrac{x^2}{x^2 \times(\sqrt (1+x+x^2)+(\sqrt( x+1)}}

\dashrightarrow\sf{lim_x \to 0 \: \: \: \cancel\dfrac{x^2}{x^2} \times\dfrac{1}{(\sqrt(1+x+x^2)+(\sqrt( x+1)}}

\dashrightarrow\sf{lim_x \to 0 \: \: \: \dfrac{1}{(\sqrt(1+x+x^2)+(\sqrt (x+1)}}

 \:  \:  \:  \:  \:  \:  \star \sf{ \: put \: the \: value \: 0 \: in \: the \: equation \: of \: x}

\dashrightarrow\sf{lim_x \to 0 \: \: \: \dfrac{1}{(\sqrt(1)+0+(0)^2)+(\sqrt(0)+1)}}

\dashrightarrow\sf{lim_x \to 0\: \: \: \dfrac{1}{1+1}}

\dashrightarrow\sf{lim_x \to 0 \: \:  \implies\dfrac{1}{2}}

 \:  \:  \:  \:  \:  \:  \blue \bigstar \boxed{ \sf \pink{ \: the \: answer \: is \:  \dfrac{1}{2} }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions