Math, asked by sameer5, 1 year ago

limits x tends to infinite under root x square + x -under  root x.
plss urgent ..


prakriti27: is this ur question???
sameer5: √x only x
prakriti27: Lim √x2 + √x - x
x->∞
prakriti27: this??
sameer5: no middle only x hai root x nhi
prakriti27: Lim √x2 + x - √x
x->∞
prakriti27: aisa??
sameer5: Lim √x2 + x - √x
sameer5: yes
prakriti27: okk

Answers

Answered by prakriti27
6
Lim √x2 + x - √x 
x->∞
let x=1/y so that y->0, when x->

Lim √1/y2 + 1/y - √1/y 
y->0
Lim 1/y + 1/y - √1/y 
y->0
Lim (1+1)/y - √1/y 
y->0
Lim 2/y - √1/y 
y->0
Lim 2/y - 1/√y 
y->0
Lim (2√y - y)/y√y 
y->0
Lim (2√y - y)/y√y x (2√y + y)/(2√y + y)
y->0
Lim (4y - y2)/y√y(2√y + y) 
y->0
Lim (4y - y2)/(2y2 + y2√y) 
y->0
dividing each term with the highest power of y
Lim (4y/y2 - y2/y2)/(2y2/y2 + y2√y/y2) 
y->0
Lim (4/y - 1)/(2 + √y) 
y->0
(4/0 - 1)/(2 + 0)
0 - 1 / 2
-1/2 it is the answer....

prakriti27: welcome.... :)
kvnmurty: the answer you have given is not correct, i guess... dividing highest power .step and later , you have done mistake....i guess..
sameer5: ohh sister this wrong
prakriti27: can u pls tell me whats wrong here
prakriti27: i didn't get my mistake
kvnmurty: 4/y -> infinity and not 0...
prakriti27: no no
prakriti27: oops haa
prakriti27: yes ri8
prakriti27: thanks
Answered by kvnmurty
2
the given question is not clearly specified.

 \lim_{x \to \infty} \sqrt{x^2+x} -\sqrt{x}\\\\= \lim_{x \to \infty}\ \ x*[\sqrt{1+\frac{1}{x}}-\frac{1}{\sqrt{x}}}]\\\\= \lim_{x \to \infty}  x * [\sqrt{1+0}-0]= \lim_{x \to \infty} x\\\\=\infty
========================
\sqrt{x^2}+x-\sqrt{x}=x+x-\sqrt{x}=2x-\sqrt{x}=x*(2-\frac{1}{\sqrt{x}})\\\\ \lim_{x \to \infty} x*(2-\frac{1}{\sqrt{x}} )\\\\=\lim_{x \to \infty} x (2-0)=\lim_{x \to \infty} x*2\\\\=\infty




sameer5: yaa this is my question
sameer5: sir under root x square not only under root x2+ x - under root x
sameer5: this is the question
kvnmurty: use parentheses ( ) [ ] to clearly write your question...
prakriti27: he has said that the under root x2 + u have taken is just under root x2
prakriti27: *under root x2+x
prakriti27: and + x will be out of under root
kvnmurty: use parentheses ( ) , [ ] { } brackets to clearly write the expression please
prakriti27: Lim √x2 + x - √x
x->∞
prakriti27: this is the question
Similar questions