Math, asked by anubhabnayak1234, 5 months ago

limitxtends to 0 tan 8x/sin2x​

Answers

Answered by amenla2711
0

Answer:

don't know............................

Answered by aryan073
5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\mathtt{\huge{\underline{\red{Answer\: :}}}}

 \:   \large \pink{ \bold{ \underline{ step \: by \: step \: explaination}}}

\quad\implies\tt{\lim_{x \to 0} \dfrac{tan8x}{sin2x}}

\quad\implies\bf{\bullet \: Properties }

\clubsuit\bf{\lim_{x \to 0} \dfrac{tanx}{x} =1}

\clubsuit\bf{\lim_{x \to 0} \dfrac{sinx}{x}=1}

\quad\implies\bf{\bullet \: Apply \: the \: properties }

\quad\implies\displaystyle\sf{\lim_{x \to 0} \dfrac{tan8x}{sin2x}}

\quad\implies\displaystyle\sf{\lim_{x \to 0} \dfrac{\dfrac{tan8x \times 8x}{8x}}{\dfrac{\sin2x \times 2x}{2x}}</p><p>}

\quad\implies\displaystyle\sf{\lim_{x \to 0} \dfrac{8x}{2x}}

\quad\implies\displaystyle\sf{\lim_{x \to 0}\cancel\dfrac{8x}{2x}}

\quad\implies\displaystyle\sf{\lim_{x \to 0} \: 4}

\boxed{\underline{\bf{\lim_{x \to 0} \dfrac{tan8x}{sin2x}=4}}}

Similar questions