Math, asked by mishramishra3651, 1 year ago

limt x=3 hai kisi ko bhi answer ata ho to send kar​

Attachments:

Answers

Answered by ihrishi
1

Step-by-step explanation:

\lim_{x\to 3} [  \frac{1}{3 {x}^{2} - 14x + 15 } +   \frac{1}{{x}^{2} - 10x + 21 }]  \\  \\  = \lim_{x\to 3} [  \frac{1}{3 {x}^{2} - 9x - 5x + 15 } +   \frac{1}{{x}^{2} - 7x  - 3x+ 21 }]  \\  \\ =  \lim_{x\to 3} [  \frac{1}{3x(x - 3)  - 5(x  -  3) } +   \frac{1}{x({x}- 7) - 3(x -  7) }] \\  \\  = \lim_{x\to 3} [  \frac{1}{(x - 3)(3x  - 5) } +   \frac{1}{(x - 3)(x -  7) }] \\  \\ =  \lim_{x\to 3} [ \frac{1}{(x - 3)} \{\frac{1}{(3x  - 5) } +   \frac{1}{(x -  7) } \}]  \\  \\  = \lim_{x\to 3} [ \frac{1}{(x - 3)} \{\frac{x - 7 + 3x - 5}{(3x  - 5) (x -  7)} \}]  \\  \\  = \lim_{x\to 3} [ \frac{1}{(x - 3)} \{\frac{4x - 12}{(3x  - 5) (x -  7)} \}]  \\  \\ =  \lim_{x\to 3} [ \frac{1}{(x - 3)} \{\frac{4(x - 3)}{(3x  - 5) (x -  7)} \}] \\  \\  = \lim_{x\to 3} [  \{\frac{4}{(3x  - 5) (x -  7)} \}]    \\\\  = \frac{4}{(3 \times 3  - 5) (3-  7)}  (applying \: limit )\\\\  = \frac{4}{(9  - 5) ( - 4)} \\\\  = \frac{4}{(4) ( - 4)}   \\  \\ =  - \frac{1}{4}

Similar questions