limx-0 1÷x (cot 2x - cosec 2x)
Answers
Answered by
1
hello friend...
here is the solution,
we have to find
lim x→0 1÷x (cot 2x - cosec 2x) = ?
formula used:-
lim x→0 (tan x)/x = 1
{1- (cos 2x)}= 2sin²x
sin 2x = 2sinx cosx
now here
lim x→0 1÷x (cot 2x - cosec 2x) =
let first solve
( cot 2x - cosec 2x)=
{(cos 2x)/(sin 2x) - 1 /( sin 2x)}
= { (cos 2x -1) / sin 2x}
= {-(1-cos 2x)/ sin 2x}
= { -2 sin²x/2sinxcosx}
= {- (sinx)/(cos x)}
= -tan x
now
lim x→0 1÷x (cot 2x - cosec 2x) =
Lim x→0 1/x (-tan x)
= Lim x→0 (-tan x)/x
= - Lim x→0 (tan x)/x
= -1
hence.
lim x→0 1÷x (cot 2x - cosec 2x) = -1
## Hope it helps##
here is the solution,
we have to find
lim x→0 1÷x (cot 2x - cosec 2x) = ?
formula used:-
lim x→0 (tan x)/x = 1
{1- (cos 2x)}= 2sin²x
sin 2x = 2sinx cosx
now here
lim x→0 1÷x (cot 2x - cosec 2x) =
let first solve
( cot 2x - cosec 2x)=
{(cos 2x)/(sin 2x) - 1 /( sin 2x)}
= { (cos 2x -1) / sin 2x}
= {-(1-cos 2x)/ sin 2x}
= { -2 sin²x/2sinxcosx}
= {- (sinx)/(cos x)}
= -tan x
now
lim x→0 1÷x (cot 2x - cosec 2x) =
Lim x→0 1/x (-tan x)
= Lim x→0 (-tan x)/x
= - Lim x→0 (tan x)/x
= -1
hence.
lim x→0 1÷x (cot 2x - cosec 2x) = -1
## Hope it helps##
manyasurve:
this answer is wrong or right answer is -1
we have to find
lim x→0 1÷x (cot 2x - cosec 2x) = ?
formula used:-
lim x→0 (tan x)/x = 1
{1- (cos 2x)}= 2sin²x
sin 2x = 2sinx cosx
lim x→0 1÷x (cot 2x - cosec 2x) =
let first solve
( cot 2x - cosec 2x)=
{(cos 2x)/(sin 2x) - 1 /( sin 2x)}
= { (cos 2x -1) / sin 2x}
= {-(1-cos 2x)/ sin 2x}
= { -2 sin²x/2sinxcosx}
= {- (sinx)/(cos x)}
= -tan x
now
lim x→0 1÷x (cot 2x - cosec 2x) =
Lim x→0 1/x (-tan x)
= Lim x→0 (-tan x)/x
= - Lim x→0 (tan x)/x
= -1
hence.
lim x→0 1÷x (cot 2x - cosec 2x) = -1
## Hope it helps##
Similar questions