Math, asked by zdurreshehwar, 1 year ago

limx➡0 Tan3x-2x/3x-sin^2x

Answers

Answered by Iamkeetarp
26
Hope it helepd you....
Attachments:
Answered by athleticregina
14

Answer:

\lim_{x \to 0} \dfrac{\tan 3x-2x}{3x-\sin^2x}=\frac{1}{3}

Step-by-step explanation:

Given : \lim_{x \to 0} \dfrac{\tan 3x-2x}{3x-\sin^2x}

Apply limits we get, \frac{0}{0} form, thus,

Applying L' hopital rule,

Differentiating numerator and denominator with respect to x, we have,

\lim_{x \to 0} \dfrac{3\sec^23x-2}{3-2\sin x\cosx}

Also, 2\sin x \cos x =\sin2x,

\lim_{x \to 0} \dfrac{3\sec^23x-2}{3-\sin2x}

Apply limits , we get,

\Rightarrow \frac{3\sec^23(0)-2}{3-\sin2(0)}

\Rightarrow \frac{3(1)-2}{3}=\frac{1}{3}

thus, \lim_{x \to 0} \dfrac{\tan 3x-2x}{3x-\sin^2x}=\frac{1}{3}

Similar questions