Math, asked by 2010051511003772, 7 months ago

limx=0
 \frac{sin2x}{x}

Answers

Answered by pulakmath007
2

</p><p></p><p>\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

\displaystyle \lim_{x \to 0} \frac{sin2x}{x}

 = \displaystyle \lim_{x \to 0} \frac{sin2x}{2x} \times 2

 = 2 \times \displaystyle \lim_{x \to 0} \frac{sin2x}{2x}

 = 2 \times 1

 = 2

</p><p></p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Answered by d687cyoyo
1

Answer:

limxsin2x

= \displaystyle \lim_{x \to 0} \frac{sin2x}{2x} \times 2=x→0lim2xsin2x×2

= 2 \times \displaystyle \lim_{x \to 0} \frac{sin2x}{2x}=2×x→0lim2xsin2x

= 2 \times 1=2×1

= 2=2

Similar questions