Math, asked by 2010051511003772, 9 months ago

limx=0

 \sqrt{1 + x}  -  \sqrt{1 - x}  \: divide \: by \:2 x

Answers

Answered by shadowsabers03
4

We're asked to evaluate,

\displaystyle\longrightarrow L=\lim_{x\to0}\dfrac{\sqrt{1+x}-\sqrt{1-x}}{2x}

Let,

\longrightarrow x=\cos(2\theta)

As x\to0,

\longrightarrow \cos(2\theta)\to0

\longrightarrow 2\theta\to\cos^{-1}(0)

\longrightarrow 2\theta\to\dfrac{\pi}{2}

\longrightarrow \theta\to\dfrac{\pi}{4}

Then the limit becomes,

\displaystyle\longrightarrow L=\dfrac{1}{2}\cdot\lim_{\theta\to\frac{\pi}{4}}\dfrac{\sqrt{1+\cos(2\theta)}-\sqrt{1-\cos(2\theta)}}{\cos(2\theta)}

We know that,

  • 1+\cos(2\theta)=2\cos^2\theta
  • 1-\cos(2\theta)=2\sin^2\theta
  • \cos(2\theta)=\cos^2\theta-\sin^2\theta

Then,

\displaystyle\longrightarrow L=\dfrac{1}{2}\cdot\lim_{\theta\to\frac{\pi}{4}}\dfrac{\sqrt{2\cos^2\theta}-\sqrt{2\sin^2\theta}}{\cos^2\theta-\sin^2\theta}

\displaystyle\longrightarrow L=\dfrac{1}{2}\cdot\lim_{\theta\to\frac{\pi}{4}}\dfrac{\sqrt2\,\cos\theta-\sqrt2\,\sin\theta}{\cos^2\theta-\sin^2\theta}

\displaystyle\longrightarrow L=\dfrac{1}{2}\cdot\lim_{\theta\to\frac{\pi}{4}}\dfrac{\sqrt2\,(\cos\theta-\sin\theta)}{(\cos\theta+\sin\theta)(\cos\theta-\sin\theta)}

\displaystyle\longrightarrow L=\dfrac{\sqrt2}{2}\cdot\lim_{\theta\to\frac{\pi}{4}}\dfrac{\cos\theta-\sin\theta}{(\cos\theta+\sin\theta)(\cos\theta-\sin\theta)}

\displaystyle\longrightarrow L=\dfrac{1}{\sqrt2}\cdot\lim_{\theta\to\frac{\pi}{4}}\dfrac{1}{\cos\theta+\sin\theta}

Taking \theta=\dfrac{\pi}{4},

\displaystyle\longrightarrow L=\dfrac{1}{\sqrt2}\cdot\dfrac{1}{\cos\left(\dfrac{\pi}{4}\right)+\sin\left(\dfrac{\pi}{4}\right)}

\displaystyle\longrightarrow L=\dfrac{1}{\sqrt2}\cdot\dfrac{1}{\left(\dfrac{1}{\sqrt2}+\dfrac{1}{\sqrt2}\right)}

\displaystyle\longrightarrow L=\dfrac{1}{\sqrt2}\cdot\dfrac{1}{\left(\dfrac{2}{\sqrt2}\right)}

\displaystyle\longrightarrow L=\dfrac{1}{\sqrt2}\cdot\dfrac{1}{\sqrt2}

\displaystyle\longrightarrow\underline{\underline{L=\dfrac{1}{2}}}}

Hence 1/2 is the answer.

Similar questions