limx-- 0 xtan2x - 2x tanx /((1- cos2x)2
Answers
Answered by
1
Answer:
1/2
Step-by-step explanation:
limx-> 0 (xtan2x - 2x tanx)/((1- cos2x)²
Using Mclaurin's expansion for tan(x) = x + x³/3 +2/15x⁵+..., we get
xtan2x - 2x tanx = x[(2x) + (2x)³/3 + 2/15(2x)⁵+...]
-2x[x + x³/3 +2/15x⁵+....]
= 2x⁴ + 4x⁶ +....---(1)
Also, 1- cos2x = 2sin²x
limx->0 sinx/x =1,----(2),
limx-> 0 (xtan2x - 2x tanx)/((1- cos2x)²
Using (1) and (2),
=limx-> 0 (2x⁴ + 4x⁶ +...)/(2sin²x)²
Dividing Numerator and Denominator by x⁴ we get
=limx-> 0 (2 + 4x²+..)/4(sin⁴x/x⁴)
=limx-> 0 (2 + 4x²+..)/limx-> 04(sin⁴x/x⁴)
=1/2 .
Similar questions
Math,
7 months ago
Physics,
7 months ago
Biology,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago