Math, asked by s20171624, 3 months ago

limx→4 sqrt(5-x)-1 / sqrt(5+x)-3​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \lim_{x \rarr4}  \frac{ (\sqrt{5 - x}  - 1)}{ (\sqrt{5 + x}  - 3)}  \\

 =  \lim_{x \rarr4} \frac{( \sqrt{5 - x} - 1)( \sqrt{5 - x}  + 1)( \sqrt{5 + x} + 3)  }{( \sqrt{5 + x} - 3)( \sqrt{5 + x}   + 3)( \sqrt{5 - x}  + 1)}  \\

 =  \lim_{x \rarr4} \frac{(5 - x - 1)( \sqrt{5 + x} + 3) }{(5 + x - 3)( \sqrt{5 - x}   + 1)}  \\

 =  \lim_{x \rarr4} \frac{(4 - x)( \sqrt{5 + x}  + 3)}{(2 + x)( \sqrt{5 - x} + 1) }  \\

 =  \frac{(4 - 4)(6)}{(6)(2)}  \\

 = 0

Similar questions