Math, asked by shubham212004, 4 months ago

limx-5, x^k -5^k/x-5 = 500​

Answers

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  Question :-  }}

\bf \:\lim_{x\to5}\dfrac{ {x}^{k} -  {5}^{k}  }{x - 5}  = 500 \: then \: find \: k.

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\large \red{AηsωeR } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Formula \:  Used  :-  }}

\bf \:\lim_{x\to \: a}\dfrac{ {x}^{n} -  {a}^{n}  }{x - a}  = n {a}^{n - 1}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\lim_{x\to5}\dfrac{ {x}^{k} -  {5}^{k}  }{x - 5}  = 500

\sf\implies \:k {(5) }^{k - 1}  = 500

\sf\implies \:k {(5) }^{k - 1}  = 5 \times 5 \times 5 \times 4

\sf\implies \:k {(5) }^{k - 1}  = 4 \times  {5}^{3}

\sf\implies \:k {(5) }^{k - 1}  = 4 \times  {5}^{4 - 1}

★ So, on comparing we get

\bf\implies \:k = 4

\large{\boxed{\boxed{\sf{Hence,\sf \:\lim_{x\to5}\dfrac{ {x}^{k} -  {5}^{k}  }{x - 5}  = 500 \implies k = 4}}}}

Similar questions