Math, asked by rajmili4518, 5 months ago

Limx->0(sinx-x)/xsinx

Answers

Answered by mathdude500
2

\large\underline\blue{\bold{Given \:  Question :-  }}

\bf \:\lim_{x\to0}\dfrac{sinx - x}{xsinx}

\bf \:\large \red{AηsωeR } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

✏️ Concept used :-

L' Hospital Rule

  • So, L'Hospital's Rule tells us that if we have an indeterminate form 0/0 or ∞/∞ all we need to do is differentiate the numerator and differentiate the denominator and then take the limit.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Formula \:  Used  :-  }}

\bf \:\lim_{x\to0}\dfrac{sinx}{x}  = 1

\bf \:\dfrac{d}{dx} sinx = cosx

\bf \:\dfrac{d}{dx}cosx =  - sinx

\bf \:\dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1}

\bf \:\dfrac{d}{dx}k = 0

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\bf \:\lim_{x\to0}\dfrac{sinx - x}{xsinx}

\bf \: = \lim_{x\to0}\dfrac{sinx - x}{x \times \dfrac{sinx}{x} \times x }

\bf \: = \lim_{x\to0}\dfrac{sinx - x}{ {x}^{2} }

☆Using L - Hospital Rule, we get

\bf \:\lim_{x\to0}\dfrac{cosx - 1}{2x}

☆Using L - Hospital Rule, we get

\bf \: = \lim_{x\to0}\dfrac{ - sinx - 0}{2}

\bf \: =  - \dfrac{1}{2} \lim_{x\to0}sinx

\bf \: =  - \dfrac{1}{2}  \times 0 = 0

\large{\boxed{\boxed{\bf{Hence, \: \bf \:\lim_{x\to0}\dfrac{sinx - x}{xsinx} =  0 }}}}

Similar questions