Math, asked by nikettare, 2 months ago

limx-->0 (x+1) ^5 -1/x​

Answers

Answered by Anonymous
30

Solution :

 \bf \:  \:  \bull \:  \:  \: \:  \:  \:  \lim_{x \to 0}  { \bigg(x + 1 \bigg)}^{5}  -  \frac{1}{x}  \\  \\

 \begin{array}{c|c}  \implies \sf\lim_{x \to {0}^{ + } }  { \bigg(x + 1 \bigg)}^{5} -  \frac{1}{x}    & \implies \sf\sf\lim_{x \to {0}^{  -  } }  { \bigg(x + 1 \bigg)}^{5} -  \frac{1}{x} \\  \\  \\\implies \sf \lim_{x \to  {0}^{ - } }  { \bigg( {0}^{ + }  + 1 \bigg)}^{5} +  \frac{1}{ {0}^{ + } }  & \implies\sf \lim_{x \to  {0}^{ - } }  { \bigg( {0}^{  -  }  + 1 \bigg)}^{5} +  \frac{1}{ {0}^{  -  } }\\  \\   \\  \implies \sf 1 +  \infty & \implies \sf 1 -  \infty  \\  \\  \\  \implies \bf \:  \infty & \implies \sf \bf  -  \infty \end{array} \\  \\  \\  \bf  \therefore \:  \: limit \:  \: doesn't \: exist

Similar questions