Math, asked by bss68698, 3 months ago

Limx tends to 0 ax+xcosx/bsinx

Answers

Answered by mathdude500
6

\large\underline\blue{\bold{Given \:  Question :-  }}

\bf \:\lim_{x\to0} \dfrac{ax + xcosx}{bsinx}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\large \red{AηsωeR } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Formula \:  Used  :-  }}

\bf \:\lim_{x\to0}\dfrac{sinx}{x}  = 1

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\lim_{x\to0} \dfrac{ax + xcosx}{bsinx}

\bf \: = \lim_{x\to0} \dfrac{x(a + cosx)}{bsinx}

\bf \: = \lim_{x\to0} \dfrac{a + cosx}{b \times  \dfrac{sinx}{x} }

\bf \: =\dfrac{1}{b}  \lim_{x\to0}(a + cosx) \times \bf \:\lim_{x\to0}\dfrac{1}{\dfrac{sinx}{x} }

\bf \: = \dfrac{1}{b}  \times (a + 1) \times 1

\bf \: = \dfrac{a + 1}{b}

\large{\boxed{\boxed{\bf{Hence, \bf \:\lim_{x\to0} \dfrac{ax + xcosx}{bsinx}  = \dfrac{a + 1}{b} }}}}

Answered by arpanaial06
0

Step-by-step explanation:

Iim x tends to 0 as+xcosx/bsinx = a+1/b

Attachments:
Similar questions