Math, asked by mishraanupriya67, 8 months ago

limx tends to zero 1+2+3+....+x /x*2​

Answers

Answered by senboni123456
0

Step-by-step explanation:

 \lim _{x -  > 0} \frac{1 + 2 + 3 + .... + x}{ {x}^{2} }

\lim _{x -  > 0} \frac{ \frac{x(x + 1)}{2} }{ {x}^{2} }

\lim _{x -  > 0} \frac{x(x + 1)}{2 {x}^{2} }

\lim _{x -  > 0} \frac{x + 1}{2x}

This in 0/0 form, so, using l'hospital's rule,

\lim _{x -  > 0} \frac{ \frac{d}{dx}(x + 1) }{ \frac{d}{dx} (2x)}

\lim _{x -  > 0} \frac{1}{2}

 =  \frac{1}{2}

Similar questions