Math, asked by ashu3938, 1 year ago

limxtends to 0 ((tanx-sinx)/x^3

Attachments:

Answers

Answered by DerrickStalvey
0

please find attached solution


Attachments:
Answered by lublana
0

Given:

\lim_{x\rightarrow 0}\frac{tanx-sinx}{x^3}

To find:

Value of \lim_{x\rightarrow 0}\frac{tanx-sinx}{x^3}

Solution:

\lim_{x\rightarrow 0}\frac{tanx-sinx}{x^3} (0/0 form)

Now, applying L'hospital rule

\lim_{x\rightarrow 0}\frac{sec^2x-cosx}{3x^2}(0/0 form)

Again,applying L'hospital rule

\lim_{x\rightarrow 0}\frac{2sec^2xtanx+sinx}{6x}(0/0 form)

Again,applying L'hospital rule

\lim_{x\rightarrow 0}\frac{4sec^2xtanx+2sec^4x+cosx}{6}

=\frac{3}{6}=\frac{1}{2}

Similar questions