Math, asked by tribhuvanswapni6380, 11 months ago

Line m is intersects sides AB and AC of triangle ABC in points P and Q respectively AP = 4.2 PB= 6.3 AQ= 4 QC = 6 state with reason whether line m is parallel to side BC or not

Answers

Answered by MaheswariS
41

\underline{\textsf{Given:}}

\textsf{In triangle ABC, AP=4.2cm, PB=6.3cm, AQ=4 cm, QC= cm}

\underline{\textsf{To find:}}

\textsf{Whether PQ is parallel to BC or not}

\underline{\textsf{Solution:}}

\mathsf{Converse\;basic\;propotionality\;theorem:}

\underline{\textsf{If a line divides two sides of a triangle in the same ratio,}}

\underline{\textsf{then the line is parallel to the third side}}

\mathsf{Consider,}

\mathsf{\dfrac{AP}{PB}=\dfrac{4.2}{6.3}}

\implies\mathsf{\dfrac{AP}{PB}=\dfrac{2}{3}}......(1)

\mathsf{\dfrac{AQ}{QB}=\dfrac{4}{6}}

\implies\mathsf{\dfrac{AQ}{QB}=\dfrac{2}{3}}.......(2)

\mathsf{From\;(1)\;and\;(2),\;we\;get}

\mathsf{\dfrac{AP}{PB}=\dfrac{AQ}{QB}}

\textsf{By converse of basic proportionality theorem}

\textsf{PQ is parallel to BC}

\textsf{Hence the line m is parallel to BC}

Attachments:
Answered by vishwanathbhadwalkar
0

Step-by-step explanation:

pq is parallel to bc....

..

Similar questions