Math, asked by TbiaSupreme, 1 year ago

Line passing through (3,4,5) and (4,5,6) has direction cosines ......,Select the correct option from the given options.
(a) 1,1,1,1
(b) √3,√3,√3
(c) 1/√3,1/√3/1/√3
(d) 7,9,11

Answers

Answered by ignitedlearner
0
for solution refer attachment answer is option c
Attachments:
Answered by abhi178
1
if line passing through two points (a_1,b_1,c_1) and (a_2,b_2,c_2)
then, direction cosine of lines are \{\frac{(a_2-a_1)}{\sqrt{(a_2-a_1)^2+(b_2-b_1)^2+(c_2-c_1)^2}},\frac{(b_2-b_1)}{\sqrt{(a_2-a_1)^2+(b_2-b_1)^2+(c_2-c_1)^2}},\frac{(c_2-c_1)}{\sqrt{(a_2-a_1)^2+(b_2-b_1)^2+(c_2-c_1)^2}}\}

here, a_1=3,b_1=4,c_1=5 and a_2=4,b_2=5,c_2=6

now, direction cosine :
\{\frac{(4-3)}{\sqrt{(4-3)^2+(5-4)^2+(6-5)^2}},\frac{(5-4)}{\sqrt{(4-3)^2+(5-4)^2+(6-5)^2}},\frac{(6-5)}{\sqrt{(4-3)^2+(5-4)^2+(6-5)^2}}

\{\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\}

hence, option (c) is correct.
Similar questions