Math, asked by aarthi2192018, 10 months ago

linear equation in two variables find whether it is unique infinite or no solution 3 x + 5 y equal to 13 5 x + 3 y equal to 4​

Answers

Answered by sumit1202
0

Answer:

3x+5y=13

x=(13-5y)/3

=(65-25y)/3+3y=4

=65-25y+9y=12

65-16y=12

53=16y

y=53/16

Answered by Anonymous
0

☯ AnSwEr :

We know the case of unique solution, Infinite many solutions and no solution.

\large{\implies {\boxed{\boxed{\sf{Infinite \: many \: Solutions = \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}}}}}}

Where,

  • a1 = 3
  • a2 = 5
  • b1 = 5
  • b2 = 3
  • c1 = -13
  • c2 = -4

Putting Values

\sf{\dashrightarrow \frac{3}{5} =\frac{5}{3} = \frac{-13}{-4}} \\ \\ \sf{\dashrightarrow \frac{3}{5} ≠ \frac{5}{3} ≠ \frac{13}{4}}

\therefore It doesn't satisfy the case of infinte many solutions.

\rule{200}{2}

Now,

\large{\implies {\boxed{\boxed{\sf{No \: Solution = \frac{a_1}{a_2} = \frac{b_1}{b_2} ≠ \frac{c_1}{c_2}}}}}}

↪ Where,

  • a1 = 3
  • a2 = 5
  • b1 = 5
  • b2 = 3
  • c1 = -13
  • c2 = -4

Putting Values

\sf{\dashrightarrow \frac{3}{5} = \frac{5}{3} ≠ \frac{-13}{-4}} \\ \\ \sf{\dashrightarrow \frac{3}{5} ≠ \frac{5}{3} ≠ \frac{13}{4}}

\therefore It doesn't satisfy the case of no solutions.

\rule{200}{2}

\large{\implies {\boxed{\boxed{\sf{Unique \: Solution = \frac{a_1}{a_2} ≠ \frac{b_1}{b_2}}}}}}

Where,

  • a1 = 3
  • a2 = 5
  • b1 = 5
  • b2 = 3
  • c1 = -13
  • c2 = -4

Putting Values

\sf{\dashrightarrow \frac{3}{5} ≠\frac{5}{3} ≠ \frac{-13}{-4}} \\ \\ \sf{\dashrightarrow \frac{3}{5} ≠ \frac{5}{3}}

As, it satisfy the case of unique solution.

\therefore The correct answer of the question is unique solution.

Similar questions