Math, asked by simi2021, 1 month ago

linear equations in one variable.

solve fast. urgent.

Attachments:

Answers

Answered by abhinavmike85
18

\huge{✯}\huge{\underline{\underline{\mathcal{\sf{Answer}}}}}

\huge{☞} First Number = 23\dfrac{1}{7}

\huge{☞} Second Number = 12\dfrac{6}{7}

\\\\

\huge{✯} \huge{\underline{\underline{\mathcal{\sf{Given}}}}}

\dfrac{2}{3} of first number is equal to \dfrac{6}{5} of other number.

\\\\

\huge{✯} \huge{\underline{\underline{\mathcal{\sf{Steps}}}}}

Let first number be x.

Other number = 36-x

According to the question,

\large{⇒}\dfrac{2}{3} of x = \dfrac{6}{5} of (36-x)

\large{⇒}Sending x terms to LHS and constant terms to RHS,

\large{⇒} \dfrac{2}{3} x  =  \dfrac{6}{5} (36 - x) \\  \\\large{⇒}\dfrac{2}{3}x =  \dfrac{216}{5}   -  \dfrac{6}{5} x \\  \\ \large{⇒} \dfrac{2}{3} x +  \dfrac{6}{5} x =  \dfrac{216}{5}  \\  \\\large{⇒} \dfrac{10x + 18x}{15}  =  \dfrac{216}{5}  \\  \\ \large{⇒}28x =  \dfrac{216 \times 15}{5}  \\  \\\large{⇒} x =  \dfrac{216\times 15}{5 \times 28}  \\  \\ \: \large{⇒} x =  \dfrac{162}{7}  \\  \\\large{⇒} x = 23 \dfrac{1}{7}

\large{⇒}Second Number = 36-\dfrac{162}{7}

\large{⇒}Second Number = \dfrac{252-162}{7}

\large{⇒}Second Number = \dfrac{90}{7}

\large{⇒}Second Number = 12\dfrac{6}{7}

\\\\\fbox{\fbox{\fbox{\fbox{\huge{\underline{\underline{\sf{\green{Hope\:it\:helps}}}}}}}}}

Answered by 1meera1980gmailcom
0

Answer:

please LIKE sirf like me

Similar questions