Math, asked by rishiraj43, 1 year ago

Linear equations in one variable. solve the equation and verify your result.

Attachments:

Answers

Answered by Anonymous
15
 \bold {\huge {Solutions :-}}

 Q: \frac{3x}{10(2 - x) - 3(x + 2)} = \frac{ - 6}{40} \\ \\ = > \frac{3x}{20 - 10x - 3x - 6} = \frac{ - 3}{20} \\ \\ = > 3x \times 20 = - 3(20 - 10x - 3x - 6) \\ \\ = > 60x = - 60 + 30x + 9x + 18 \\ \\ = > 60x - 30x - 9x = - 60 + 18 \\ \\ = > 21x = - 42 \\ \\ = > x = \frac{ - 42}{21} = - 2



 \bold {\underline {Now~verification:-}}

For verification put the value of x in the equation.


 \frac{3 \times - 2}{10(2 - \times - 2) - 3( - 2 + 2)} = \frac{ - 6}{40} \\ \\ = > \frac{3 \times - 2}{20 - 10 \times - 2 - 3 \times - 2 - 6} = \frac{ - 3}{20} \\ \\ = > 3 \times - 2 \times 20 = - 3(20 - 10 \times - 2 \: - 3 \times - 2 - 6) \\ \\ = > 60 \times - 2 = - 60 + 30 \times - 2 + 9 \times - 2 + 18 \\ \\ = > 60 \times - 2 - 30 - 2 - 9 \times - 2 = - 60 + 18 \\ \\ = > 21 \times - 2 = - 42 \\ \\ = > - 2= \frac{ - 42}{21} = - 2



 \bold {\underline {Hence, }}

 \bold {L.H.S~ = ~R.H.S~ verified }

rishiraj43: Thanks bro this is the right answer of my question
Anonymous: welcome
Prakhar2908: Gr8 Answer !
Anonymous: thanks to everyone
ankur1563: got it
Answered by Prakhar2908
11
Answer :-

 \frac{3x}{10(2 - x) - 3(x + 2)} = \frac{ - 6}{40}





40 \times 3x = - 6(10(2 - x)3(x + 2))





120x = - 60(2 - x) + 18(x + 2)





120x = - 12 0+ 60x + 18x + 36





120x = 78x - 84





120x - 78x = - 84





42x = - 84





x = \frac{ - 84}{42}





x = - 2






Verification:






 \frac{3x}{10(2 - x) - 3(x + 2)} = \frac{ - 6}{40}





Simplyfying LHS






Putting x = -2






 \frac{3 \times (- 2)}{10(2 - ( - 2)) - 3( - 2 + 2)}






 \frac{ - 6}{(10 \times 4) - 3(0)}





 \frac{ - 6}{40 - 0}
 \frac{ - 6}{40}






RHS = >






 \frac{ - 6}{40}






Hence, LHS = RHS







Hence verified.

Anonymous: Excellent
Prakhar2908: Thanks!
Similar questions