lines p q and r s are cut by a transversal a b if angle p and b is 55 degrees and angle r m a is 125 degrees prove that line p q and r s are pararrel
Answers
Step-by-step explanation:
In PRT
In PRTBy angle sum property of triangle
In PRTBy angle sum property of triangle∠PRT+∠RPT+∠PTR=180 ∘⇒90 ∘ +45 ∘ +∠PTR=180 ∘⇒135 ∘ +∠PTR=180 ∘⇒∠PTR=180 ∘ −135 ∘⇒∠PTR=45 ∘ .Also,
⇒∠PTR=45 ∘ .Also,∠STQ=∠PTR
⇒∠PTR=45 ∘ .Also,∠STQ=∠PTR∠STQ=45 ∘ (vertically opposite angles)
⇒∠PTR=45 ∘ .Also,∠STQ=∠PTR∠STQ=45 ∘ (vertically opposite angles)In ΔSQT
⇒∠PTR=45 ∘ .Also,∠STQ=∠PTR∠STQ=45 ∘ (vertically opposite angles)In ΔSQTBy angle sum property of triangle
⇒∠PTR=45 ∘ .Also,∠STQ=∠PTR∠STQ=45 ∘ (vertically opposite angles)In ΔSQTBy angle sum property of triangle ∠SQT+∠STQ+∠TSQ=180 ∘
⇒∠PTR=45 ∘ .Also,∠STQ=∠PTR∠STQ=45 ∘ (vertically opposite angles)In ΔSQTBy angle sum property of triangle ∠SQT+∠STQ+∠TSQ=180 ∘∠SQT+75 ∘ +45 ∘ =180 ∘∠SQT+120 ∘
∠SQT+120 ∘=180 °∠SQT=180 ∘−120 ∘
∠SQT=180 ∘−120 ∘ ∠SQT=60 ∘