Math, asked by janahvi78, 9 months ago

lines XY and MN intersect at O. If ∠POY = 90° and a:b = 2 : 3, find c.

Answers

Answered by Anonymous
47

Answer:

Angle c is 126.

Explanation:

Given :

  • XY and MN intersect at O
  • ∠POY = 90°
  • a:b = 2 : 3

To Find :

  • ∠c

Solution :

Let the common ratio between a and b be x.

∴ a = 2x, and b = 3x

XY is a straight line, rays OM and OP stand on it.

∴ ∠XOM + ∠MOP + ∠POY = 180º

b + a + ∠POY = 180º

3x + 2x + 90º = 180º

5x = 90º

x = 18º

a = 2x = 2 × 18 = 36º

b = 3x = 3 ×18 = 54º

MN is a straight line. Ray OX stands on it.

∴ b + c = 180º (Linear Pair)

54º + c = 180º

c = 180º - 54º = 126º

∴ c = 126º

(Figure in attachment)

Attachments:
Answered by MaIeficent
23
\large \bf Given:-

\sf XY and MN intersect at O

 \sf \angle POY = 90 \degree

• a : b = 2 : 3

\large \bf To\:Find:-

• The measure of c

\large \bf Solution:-

Let the common ratio between a and b be x

a = 2x ; b = 3x

In the given figure

\sf \angle POY = 90 \degree

As the sum angles on a straight line = 180°

\longrightarrow\sf \angle POX + \angle POY = 180 \degree

\longrightarrow\sf \angle POX + 90 \degree = 180 \degree

\longrightarrow\sf \angle POX = 180 \degree - 90 \degree

\longrightarrow\sf \angle POX= 90 \degree

\longrightarrow\sf a + b= 90 \degree

\longrightarrow\sf 2x + 3x= 90 \degree

\longrightarrow\sf5x= 90 \degree

\longrightarrow\sf x= \dfrac{90}{5}

\longrightarrow\sf x= 18 \degree

∠MOX = b = 3x = 3 × 18 = 54°

MON is a straight line

Sum of angles on a straight line = 180°

longrightarrow \sf \angle MOX + \angle NOX = 180 \degree

\longrightarrow \sf 54 \degree + \angle NOX = 180 \degree

\longrightarrow \sf \angle NOX= 180 \degree - 54 \degree

\longrightarrow \sf \angle NOX = 126 \degree

Therefore:-

\large \boxed{ \longrightarrow \bf c = 126 \degree}
Attachments:
Similar questions