Linges and angles
plz answer
Answers
In ΔABC, we have
∠A + ∠B + ∠C = 180° (sum of the angles of a triangle)
⇒ 1/2∠A + 1/2∠B + 1/2∠C = 90°
⇒ 1/2 ∠A + ∠x + ∠y = 90° ….(i)
Again in ΔOBC
∠OBC + ∠OCB + ∠BOC = 180° (by angle sum property of a triangle)
⇒ ∠x + ∠y + ∠BOC = 180° …(ii)
Substituting ∠x + ∠y = 90° – 1/2 ∠A from (i) in eqn (ii),
we get 90° – 1/2∠A + ∠BOC = 180°
⇒ ∠BOC = 180° – 90° + 1212 ∠A
⇒ ∠BOC = 90° + 1/2<A
Given :-
In ΔABC , The bisector of AngleB and Angle C intersect each other at point O.
To prove :-
Angle BOC = 90° + 1/2
Proof :-
In ΔBOC , Let's consider Angle COB = Angle 1 and Angle OCB = Angle 2
Now, By using Angle Sum Property,
Δ1 + ΔBOC + Δ2 = 180° ( 1 )
Now, In ΔABC
By using Angle sum property,
ΔA + ΔB + ΔC = 180°
ΔA + 2Δ1 + 2Δ2 = 180°
[ Here, we have wrote 2Δ1 and Δ2Δ2 because the bisector divides it into two parts ]
ΔA + 2( Δ1 + Δ2 ) = 180°
ΔA/2 + Δ1 + Δ2 = 180° /2
ΔA/2 + Δ1 + Δ2 = 90°
Δ1 + Δ2 = 90° - ΔA/2
From eqn( 1 )
90° - ΔA/2 + ΔBOC = 180°
-ΔA/2 + ΔBOC = 180° - 90°
ΔBOC = 90° + ΔA/2