Chemistry, asked by StrongGirl, 7 months ago

Liquids A and B form ideal solution for all compositions of A and B at 25°C Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?

Answers

Answered by LaxankPurohit
1

Answer:

0.50 bar/

Explanation:

Apply Roults Law

Pt = Xa*Pa + Xb*Pb

Case 1 --> Xa = 0.25 Xb=0.75

0.3 = 0.25* Pa + 0.75*Pb

Case 2

0.4 = 0.5*Pa + 0.5*Pb

Solve simultanoeous equation

Pb= 0.5 bar

Answered by amansharma264
26

ANSWER.

The vapour pressure of pure liquid B = 0.2 bar.

EXPLANATION.

 \sf :  \implies \: liquid \: a \: and \: b \: from \: ideal \: solution \: for \: all \: compositions \: at \: 25 {}^{0} c \\  \\ \sf :  \implies \: two \: such \: solution \: with \: 0.25 \:  \: and \:  \: 0.50 \: mole \: fraction \: of \: a \:  \\  \\ \sf :  \implies \: total \: vapour \: pressure \: of \: 0.3 \:  \: and \:  \: 0.4 \:  \: bar

\sf :  \implies \:  p_{t} \:  = X _{A} P {}^{0} _{A}    +  \: X _{B} P {}^{0} _{B} \\  \\ \sf :  \implies \: X _{A} + X _{B} = 1 \\  \\ \sf :  \implies \: 0.3 = 0.25 \: P {}^{0} _{A}  \:  +  \: 0.75 \: P {}^{0} _{B} \\  \\ \sf :  \implies \:  \frac{3}{10}  =  \frac{25  \: P {}^{0} _{A}}{100}  +  \:  \frac{75 \: P {}^{0} _{B} \: }{100} \\  \\  \sf :  \implies  \: 30 =25  \: P {}^{0} _{A} \:  +  \:  75 \: P {}^{0} _{B} \:  \:  \:  \\  \\ \sf :  \implies \: 6 = 5P {}^{0} _{A} \:  + 15P {}^{0} _{B} \:  \: ......(1)

 \sf :  \implies \: 0.4 = 0.50 P {}^{0} _{A} \:  +  \: 0.50 \:  P {}^{0} _{B} \\  \\ \sf :  \implies \:  \frac{4}{10} =  \frac{50P {}^{0} _{A} }{100}   +  \:  \frac{50P {}^{0} _{B}}{100} \\  \\  \sf :  \implies \: 40 ={ 50P {}^{0} _{A} } \:  + { 50P {}^{0} _{B} } \\  \\ \sf :  \implies  \: 4 = 5P {}^{0} _{A} \:  +  \: 5P {}^{0} _{B} \: ......(2)

 \sf :  \implies \: from \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \: get \\  \\ \sf :  \implies \: 2 = 10 P {}^{0} _{B} \\  \\ \sf :  \implies \: P {}^{0} _{B} \:  =  \frac{2}{10} = 0.2 \: bar

Similar questions