Math, asked by ayaaz786, 10 months ago

List five rational numbers betwwen: -2 and -1, -1/2 and 2/3​

Answers

Answered by Brâiñlynêha
1

\huge\mathbb{\underline{SOLUTION:-}}

\bold{To\: Find}\begin{cases}\sf{Rational\: number between}\\ \sf{(-2)\:and\:(-1)}\\ \sf{\frac{(-1)}{2}\:and\:\frac{2}{3}}\end{cases}

\sf\underline{\red{According\:to\: Question:-}}

\sf Formula\: will\:be\:used\\ \\ \sf\implies d=\frac{(y-x)}{n+1}\: \: \: \: \: \: \: n=5\: \: \: \:\: y>x

Let's find the d

where x=(-2) y=(-1)

n=5

\sf d=\frac{(-2-(-1)}{5+1}\\ \\ \sf \implies d=\frac{(2+(-1)}{6}\\ \\ \sf\implies d=\frac{1}{6}

The value of d is \sf\frac{1}{6}

So, rational number \sf \implies x+d,\:x+2d\:x+3d,\:x+4d,\:x+5d

\bf\implies  x+d\\ \\ \sf  (-2)+\frac{1}{6}=\frac{-12+1}{6}=\frac{11}{6}

\bf \implies x+2d\\ \\ \sf (-2)+\frac{2}{6}=\frac{-12+2}{6}=\frac{(-10)}{6}

\bf\implies  x+3d\\ \\ \sf (-2)+\frac{3}{6}=\frac{(-12+3)}{6}=\frac{(-9)}{6}

\bf \implies x+4d\\ \\ \sf (-2)+\frac{4}{6}=\frac{(-12+4)}{6}=\frac{(-8)}{6}

\bf\implies  x+5d\\ \\ \sf (-2)+\frac{5}{6}=\frac{(-12+5)}{6}=\frac{(-7)}{6}

\boxed{\sf{\blue{The\: rational\:number\:between (-2)\:and\:(-1)}}}

\sf\underline{\red{\mathfrak{\frac{(-11)}{6}\:,\frac{(-10)}{6}\:,\frac{-9}{6}\:,\frac{-8}{6}\:,\frac{-7}{6}}}}

  • Now 2

\sf x=\frac{-1}{2}\: \: \: \: \: y=\frac{2}{3}\: \: \: \: \: n=5

Then to find d

\bf\implies d=\frac{y-x}{n+1}

\sf\implies  d=\frac{\frac{2}{3}-\frac{-1}{2}}{5+1}\\ \\ \sf d=\frac{\frac{4+3}{6}}{6}\\ \\ \sf\implies d=\frac{7}{6}\times \frac{1}{6}=\frac{7}{36}

The value of d is=\sf\implies \frac{7}{36}

\bf \implies x+d\\ \\ \sf \frac{-1}{2}+\frac{7}{36}=\frac{-18+7}{36}=\frac{-11}{36}

\bf\implies  x+2d\\ \\ \sf \frac{-1}{2}+\frac{14}{36}=\frac{-18+14}{36}=\frac{-4}{36}

\bf\implies  x+3d\\ \\ \sf \frac{-1}{2}+\frac{21}{36}=\frac{-18+21}{36}=\frac{3}{36}

\bf\implies  x+4d\\ \\ \sf \frac{-1}{2}+\frac{28}{36}=\frac{-18+28}{36}=\frac{10}{36}

\bf\implies  x+5d\\ \\ \sf \frac{-1}{2}+\frac{7}{36}=\frac{-18+35}{36}=\frac{17}{36}

\boxed{\sf{\purple{The\: rational\:number\:between \: \frac{(-1)}{2}\:and\:\frac{2}{3}}}}

\sf\underline{\red{\mathfrak{\frac{(-11)}{36}\:,\frac{(-4)}{36}\:,\frac{3}{36}\:,\frac{10}{36}\:,\frac{17}{36}}}}

#BAL

#answerwithquality

Similar questions