Math, asked by drbharathipinto, 4 months ago

List the solution set and represent it on a number line.

1.)
50-2(x-5)<25, x belongs to W.

2.)
 - 3 &lt;  - \frac{1}{2}  -  \frac{2x}{3}  \leqslant  \frac{5}{6} x belongs to R

3.)
 - 3(x - 7) \geqslant 15 - 7x &gt;  \frac{x + 1}{3}
x belongs to R


Answers

Answered by deepakkumar9254
4

Solution :-

1.)  50 - 2(x-5) < 25, x belongs to W.

50 - 2x + 10 < 25

60 - 2x < 25

- 2x < 25 - 60

- 2x < - 35

2x > 35

x > \dfrac{35}{2}

Solution :- {x: x > \dfrac{35}{2}, where x ∈ W}

2.)  -3&lt;-\dfrac{1}{2} - \dfrac{2x}{3} \leq \dfrac{5}{6}, x belongs to R

-3&lt; \dfrac{-3-4x}{6} \leq \dfrac{5}{6}

-3&lt; \dfrac{-3-4x}{6}\:\:\:and\:\:\: \dfrac{-3-4x}{6} \leq \dfrac{5}{6}

-3\times 6&lt;{-3-4x}\:\:\:and\:\:\: -3-4x \leq \dfrac{5}{6}\times 6\\\\-18&lt;{-3-4x}\:\:\:and\:\:\: -3-4x \leq 5\\\\-18+ 3&lt;-4x\:\:\:and\:\:\: -4x \leq 5+3\\\\-15&lt;-4x\:\:\:and\:\:\: -4x \leq 8\\\\15&gt;4x\:\:\:and\:\:\: 4x \geq  8\\\\\dfrac{15}{4}&gt;x\:\:\:and\:\:\: x \geq \dfrac{8}{4}\\\\\dfrac{15}{4}&gt;x\:\:\:and\:\:\: x \geq2

Solution :- {x: 2\geg\leq x <  \dfrac{15}{4}, where x ∈ R}

3.)  -3(x-7) \geq 15-7x&gt;\dfrac{x+1}{3}, x belongs to R

-3x+21 \geq 15-7x&gt;\dfrac{x+1}{3}\\\\-3x+21 \geq 15-7x\:\:\:and\:\:\:15-7x&gt;\dfrac{x+1}{3}\\\\21-15 \geq -7x+3x\:\:\:and\:\:\:3(15-7x)&gt;x+1\\\\6 \geq -4x\:\:\:and\:\:\:45-21x&gt;x+1\\\\-6 \leq 4x\:\:\:and\:\:\:45-1&gt;x+21x\\\\\dfrac{-6}{4}\leq x\:\:\:and\:\:\:44&gt;22x\\\\\dfrac{-3}{2}\leq x\:\:\:and\:\:\:\dfrac{44}{22}&gt;x\\\\\dfrac{-3}{2}\leq x\:\:\:and\:\:\:2&gt;x

Solution :- {x: \dfrac{-3}{2}\geg\leq x < 2, where x ∈ R}

All the number lines are in the attachment.

Attachments:
Similar questions