Math, asked by anjuthakuria, 4 months ago

Llercise 5B
(b) BC = 16 cm and 1 from vertex A = 1.2
2. Find the area of an equilateral triangle, whose sides are:
(a) 5 cm
(b) 7 cm
(c) 8.5 cm
(d) 12.2 cm
(a) l = 7 cm, b = 5 cm
(c) l= 3.9 cm, b = 1.2 cm
(b) l = 8 cm, b = 7 cm
(d) 1 = 7.3 cm, b = 1.5 cm
(a) 7 cm (b) 9 cm
(c) 12 cm (d) 15 cm (e) 21 cm (£) 25 cm (g) 27 cm
1. Find area of the triangle AABC, where
(a) BC = 7 cm, I from vertex A=4 cm
(c) Base is 2.4 cm and I from vertex is 1.4 cm (d) Base is 7 cm and I from vertex is 8 cm
3. Find the area of the rectangle whose dimensions are given below.
4. Find the area of the square whose side is:​

Answers

Answered by ItzMeSam35
2

 \small { \sf{Area \: of \: an \: equilateral \: triangle , A =  \frac{ \sqrt{3} }{4}  \times Side²}}

 \small \sf{(a) \: 5 \: cm}

 \small \sf{A =  \frac{ \sqrt{3} }{4}  \times  {5}^{2} }

 \small \sf{A =  \frac{ \sqrt{3} }{4}  \times  25}

 \small \sf{A =  \frac{25 \sqrt{3} }{4} }

 \small \sf{A =  \frac{ 25 \times 1.732 }{4} }

 \small \sf{A =  \frac{ 43.3 }{4}   = 10.825 \: cm}

 \sf{(b) \: 7 \: cm }

 \small \sf{A =  \frac{ \sqrt{3} }{4}  \times  {7}^{2} }

\small \sf{A =  \frac{ \sqrt{3} }{4}  \times  49 }

\small \sf{A =  \frac{ 49\sqrt{3} }{4}  }

\small \sf{A =  \frac{{49 \times 1.732} }{4}}

\small \sf{A =  \frac{ 84.868}{4}   =21.217 \: cm }

  \small\sf{ (c) \: 8.5 \: cm}

\small \sf{A =  \frac{ \sqrt{3} }{4}  \times  {8.5}^{2} }

\small \sf{A =  \frac{ \sqrt{3} }{4}  \times  72.25}

\small \sf{A =  \frac{ 72.25\sqrt{3} }{4}  }

\small \sf{A =  \frac{ 72.25 \times 1.732 }{4}   }

\small \sf{A =  \frac{ 125.137}{4}  = 31.28425 \: cm }

 \small \sf{(d) \:12.2 \: cm }

\small \sf{A =  \frac{ \sqrt{3} }{4}  \times  {12.2}^{2} }

\small \sf{A =  \frac{ \sqrt{3} }{4}  \times 148.84 }

\small \sf{A =  \sqrt{3}  \times 37.21}

\small \sf{A =  1.732 \times 37.21 }

\small \sf{A =  64.44772 \: cm }

Similar questions