Physics, asked by diwansunita1, 1 day ago

llustration 9. Calculate the electric field at origin due to infinite number of charges as shown in figures (a) and (b) below.​

Attachments:

Answers

Answered by gops2k4
2

Answer:

figure (a) : E=2kq

figure (b) : E=2/3kq

Explanation:

Formula Used

E=\frac{kq}{r^{2}} \\

Figure (a)

E = \frac{kq}{1^{2} } +  \frac{kq}{2^{2} } + \frac{kq}{4^{2} } + ....\\E = kq [\frac{1}{1^{2} } +\frac{1}{2^{2} } + \frac{1}{4^{2} }+ ....\\                              ...1

Here we need to use sum of an infinite gp formula,

S∞ = \frac{a}{1-r}

Here, a=1, r=2

S∞ = \frac{1}{1-\frac{1}{2} } = 2

Substituting in equation 1, we get

E= 2kq

Figure b

E = kq [ \frac{1}{1^{2} } -  \frac{1}{2^{2} } +  \frac{1}{4^{2} } -...\\

Grouping positive terms together and negative terms together, we get

E= kq[(\frac{1}{1^{2} } + \frac{1}{4^{2} } + ....) - ( \frac{1}{2^{2} } +  \frac{1}{8^{2} } +...)]\\                ....1

Now we are to consider two gps.

I. a=1, r=1/4

  S∞ = \frac{1}{1-\frac{1}{4} } = 4/3

II. a=1/2, r=1/4

   S∞ = \frac{\frac{1}{2} }{1-\frac{1}{4} } = 2/3

Substituting in equation 1

E= kq{\frac{4}{3} - \frac{2}{3}}

E= 2/3kq

Similar questions