Math, asked by rajan3088, 11 months ago

LMNO is a parallelogram. OP is perpendicular to LM. Given OM= 20 cm, LP= 9 cm and area of triangle LPO=54 square cm. Find the perimeter and area of parallelogram LMNO. ​

Answers

Answered by arsh27012005
0

Answer

Area is base * height

18 * √319

18√319

Perimeter is sum of all sides

18+18+√72+√72

36+6√2+6√2

36+12√2

Answered by lublana
4

Area of parallelogram=225 square cm

Perimeter of parallelogram=80 m

Step-by-step explanation:

OM=20 cm

LP=9 cm

Area of triangle LPO=54 square cm

Area of triangle LPO=\frac{1}{2}\times base\times height=\frac{1}{2}\times LP\times OP

\frac{1}{2}\times 9\times OP=54

OP=\frac{54\times 2}{9}=12 cm

In triangle LPO

OL^2=OP^2+LP^2

Using Pythagoras theorem

(Hypotenuse)^2=(Base)^2+(Perpendicular\;side)^2

OL^2=(12)^2+9^2=144+81=225

OL=\sqrt{225}=15 cm

In triangle OPM

OM^2=PM^2+OP^2

(20)^2=PM^2+(12)^2

400=PM^2+144

PM^2=400-144=256

PM=\sqrt{256}=16 cm

LM=LP+PM=16+9=25 cm

LM=ON=25 cm

OL=MN=15 cm

Area of parallelogram=base\times height=25\times 9=225 cm^2

Perimeter of parallelogram=25(2)+15(2)=50+30=80 m

#Learns more:

https://brainly.in/question/13596932:answered by Bijaymourya

Attachments:
Similar questions