lmt x-->0 ((xcosx-sinx)/x²sinx)
Answers
Answered by
1
Answer:
-1/3
Step-by-step explanation:
lim x-> 0 ((xcosx - sinx)/x2sinx) when we substitute 0 we get an expression in 0/0 form .
now ,
lim x->0 ((xcosx - sinx)/x2 (sinx/x)*x ) [ we are writing sin x as sin x/ x * x ]
now , sinx /x =1
so ,
lim x->0 ((xcosx - sinx)/ x3)
using L's hospital rule ,
lim x-> 0 ( cosx + x(-sinx) - (cosx)) / 3x2 )
lim x->0 (-x sinx / 3x2)
lim x->0 (-1/3(sinx/x))
as we have seen before sinx/x=1
so
lim x->0 (-1/3(1))
so , ultimately we get
lim x->0 ((xcosx - sinx) /x2sinx) = -1/3
hope this helps.
Similar questions