Math, asked by ggsgshushu45, 7 months ago

ln the given fig ,AB perpendicular to BC, DC perpendicular to BC,BD perpendicular to AC ,<D=30° and DC=60√3 m.Find the length of AB.​

Attachments:

Answers

Answered by MaIeficent
19

Step-by-step explanation:

∠BDC = 30°

And DC = 60√3 m

In △DCB ,

\rm \dashrightarrow tanθ = \dfrac{Opposite \: side}{Adjacent \: side}

\rm \dashrightarrow tan 30^{\circ} = \dfrac{BC}{DC}

\rm \dashrightarrow \dfrac{1}{\sqrt{3}} = \dfrac{BC}{60\sqrt{3}}

\rm \dashrightarrow \dfrac{60\sqrt{3}}{\sqrt{3}} = BC

\rm \dashrightarrow BC = 60m

In △ABC,

∠ABC = 90°, ∠BAC = 60° , ∠ACB = 30°

\rm \dashrightarrow tanθ = \dfrac{Opposite \: side}{Adjacent \: side}

\rm \dashrightarrow tan 30^{\circ} = \dfrac{AB}{BC}

\rm \dashrightarrow \dfrac{1}{\sqrt{3}} = \dfrac{AB}{60}

\rm \dashrightarrow \dfrac{60}{\sqrt{3}} = AB

\rm \dashrightarrow \dfrac{60}{\sqrt{3}}  \times  \dfrac{ \sqrt{3} }{ \sqrt{3} } = AB

\rm \dashrightarrow \dfrac{60 \sqrt{3} }{3}  = AB

\rm \dashrightarrow AB = 20\sqrt{3}

\dashrightarrow \underline{\boxed{\rm Length \: of \: AB = 20\sqrt{3}m}}

Answered by ranapratap9721
3

Step-by-step explanation:

hope it will help full for you

Attachments:
Similar questions