Math, asked by AKS828, 29 days ago

lnx=ln(x-1)+1.Solve for x.​

Attachments:

Answers

Answered by amansharma264
3

EXPLANATION.

⇒ ㏑(x) = ㏑(x - 1) + 1.

As we know that,

We can write equation as,

⇒ ㏑(x) - ㏑(x + 1) = 1.

As we know that,

Formula of :

⇒ ㏑(a) - ㏑(b) = ㏑(a/b).

⇒ ㏑(e) = 1.

Using this formula in the equation, we get.

⇒ ㏑[(x)/(x - 1)] = 1.

⇒ ㏑[(x)/(x - 1)] = ㏑(e).

⇒ (x)/(x - 1) = e.

⇒ x = e(x - 1).

⇒ x = ex - e.

⇒ x - ex = - e.

⇒ x(1 - e) = - e.

⇒ x = (-e)/(1 - e).

⇒ x = (e)/(e - 1).

                                                                                                                 

MORE INFORMATION.

Properties of logarithms.

Let M & N arbitrary positive number such that, a > 0, a ≠ 1, b > 0, b ≠ 1 then.

(1) = ㏒ₐMN = ㏒ₐM + ㏒ₐN.

(2) = ㏒ₐ(M/N) = ㏒ₐM - ㏒ₐN.

(3) = ㏒ₐN^(α) = α㏒ₐN (α any real numbers).

(4) = ㏒_(α)^(β)N^(α) = α/β㏒ₐN (α ≠ 0, β ≠ 0).

(5) = ㏒ₐN = ㏒_(b)N/㏒_(b)a.

(6) = ㏒_(b) a.㏒ₐb = 1 ⇒ ㏒_(b) a = 1/㏒ₐb.

(7) = e^(㏑a)^(x) = aˣ.

Answered by llItzDishantll
13

EXPLANATION.

⇒ ㏑(x) = ㏑(x - 1) + 1.

As we know that,

We can write equation as,

⇒ ㏑(x) - ㏑(x + 1) = 1.

As we know that,

Formula of :

⇒ ㏑(a) - ㏑(b) = ㏑(a/b).

⇒ ㏑(e) = 1.

Using this formula in the equation, we get.

⇒ ㏑[(x)/(x - 1)] = 1.

⇒ ㏑[(x)/(x - 1)] = ㏑(e).

⇒ (x)/(x - 1) = e.

⇒ x = e(x - 1).

⇒ x = ex - e.

⇒ x - ex = - e.

⇒ x(1 - e) = - e.

⇒ x = (-e)/(1 - e).

⇒ x = (e)/(e - 1).

Similar questions