Math, asked by gk3977948, 11 months ago

lo Aman bhaii Karo solve ✌️✌️​

Attachments:

Answers

Answered by Anonymous
21

|I{•------» (◐‿◑)«------•}I|

\large\fbox{\color{purple}{Solution}}

✏ Given,

2^x = 3^y = (12)^z

let 2^x = 3y = (12)^x = k

i) 2^x = k =》2 = k^1/x ..........(1)

ii) 3^y = k =》3 = k^1/y ..........(2)

iii) (12)^z = k =》12 = k^1/2 ....(3)

Now,

=》 12 = k^1/2

=》 2^2 × 3 = k^1/2

=》 k^2/x+1/y = k^1/2

a^m ~Aa^n = a^m+n

=》 2/x + 1/y = 1/z

If a^m = a^n ==》 m = n

Hence Proved...!!!

✎﹏﹏﹏﹏﹏✊{\huge{\orange{\ddot{\smile}}}}✊ ﹏﹏﹏﹏﹏✍

{\huge{\orange{\ddot{\smile}}}}✊⚘⸙ \textbf{\large{\red{Be\:BrAinLY}} } ✍☘⚘{\huge{\orange{\ddot{\smile}}}}

✎﹏﹏﹏﹏﹏●‿●﹏﹏﹏﹏﹏✍

Answered by Anonymous
3

Answer:

✎﹏﹏﹏●‿●﹏﹏﹏✍️

·•●⇱QᴜᴇSTɪᴏN⇲●•·

If 2^x=3^y=12^z,then show that 1/z=1/y+2/x

·•●☻AnSWeR☻●•·

Let 2^x = 3^y = 12^z = k

⟹ 2 = k^1/x , 3 = k^1/y , 12 = k^1/z

Now,

12 = k^1/z

⟹ 2² × 3 = k^1/z

⟹( k^1/x)² × k^1/y = k^1/z

⟹ k^2/x + ^1/y = k^1/z

⟹ 2/x + 1/y + 1/z

Hence , proved ✌

••••

✎﹏﹏﹏●‿●﹏﹏﹏✍️

⚘⸙ here your

answer mate ✍☘

✎﹏﹏﹏●‿●﹏﹏﹏✍️

Similar questions