lo Aman bhaii Karo solve ✌️✌️
Attachments:
Answers
Answered by
21
|I{•------» (◐‿◑)«------•}I|
✏ Given,
2^x = 3^y = (12)^z
let 2^x = 3y = (12)^x = k
i) 2^x = k =》2 = k^1/x ..........(1)
ii) 3^y = k =》3 = k^1/y ..........(2)
iii) (12)^z = k =》12 = k^1/2 ....(3)
Now,
=》 12 = k^1/2
=》 2^2 × 3 = k^1/2
=》 k^2/x+1/y = k^1/2
a^m ~Aa^n = a^m+n
=》 2/x + 1/y = 1/z
If a^m = a^n ==》 m = n
Hence Proved...!!!
✎﹏﹏﹏﹏﹏✊✊ ﹏﹏﹏﹏﹏✍
✊⚘⸙✍☘⚘
✎﹏﹏﹏﹏﹏●‿●﹏﹏﹏﹏﹏✍
Answered by
3
Answer:
✎﹏﹏﹏●‿●﹏﹏﹏✍️
·•●⇱QᴜᴇSTɪᴏN⇲●•·
If 2^x=3^y=12^z,then show that 1/z=1/y+2/x
·•●☻AnSWeR☻●•·
Let 2^x = 3^y = 12^z = k
⟹ 2 = k^1/x , 3 = k^1/y , 12 = k^1/z
Now,
12 = k^1/z
⟹ 2² × 3 = k^1/z
⟹( k^1/x)² × k^1/y = k^1/z
⟹ k^2/x + ^1/y = k^1/z
⟹ 2/x + 1/y + 1/z
Hence , proved ✌
••••
✎﹏﹏﹏●‿●﹏﹏﹏✍️
⚘⸙ here your
answer mate ✍☘
✎﹏﹏﹏●‿●﹏﹏﹏✍️
Similar questions
History,
5 months ago
Social Sciences,
5 months ago
Computer Science,
5 months ago
Chemistry,
11 months ago