Math, asked by Tanishavishwakarma20, 7 hours ago

Local minima for f(x)= X/2 + 2/X occurs at ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = \dfrac{x}{2}  + \dfrac{2}{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) =\dfrac{d}{dx}\bigg[ \dfrac{x}{2}  + \dfrac{2}{x}\bigg]

We know,

\boxed{\tt{\dfrac{d}{dx}{x}^{n} =  {nx}^{n - 1}}}

and

\boxed{\tt{ \dfrac{d}{dx} \frac{1}{ {x}^{n} } =  -  \frac{n}{ {x}^{n + 1} }}}

So, using this, we get

\rm :\longmapsto\:f'(x) = \dfrac{1}{2} - \dfrac{2}{ {x}^{2} }

For, maxima or minima, we get

\rm :\longmapsto\:f'(x) = 0

\rm :\longmapsto\:\dfrac{1}{2}  - \dfrac{2}{ {x}^{2} }  = 0

\rm :\longmapsto\: \dfrac{ {x}^{2} -  4}{ 2{x}^{2} }  = 0

\rm :\longmapsto\: {x}^{2} - 4 = 0

\rm :\longmapsto\:(x - 2)(x + 2) = 0

\bf\implies \:x = 2 \:  \: or \:  \: x =  - 2

Now, We have

\rm :\longmapsto\:f'(x) = \dfrac{1}{2} - \dfrac{2}{ {x}^{2} }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f'(x) =\dfrac{d}{dx}\bigg( \dfrac{1}{2} - \dfrac{2}{ {x}^{2} } \bigg)

\rm :\longmapsto\:f''(x) = 0 + \dfrac{2}{ {x}^{3} }

\rm :\longmapsto\:f''(x) = \dfrac{2}{ {x}^{3} }

When x = 2

\rm :\longmapsto\:f''(2) = \dfrac{2}{ {2}^{3} }  = \dfrac{1}{4} > 0

\rm\implies \:f(x) \: is \: minimum \: at \: x = 2

Now, When x = - 2

\rm :\longmapsto\:f''( - 2) = \dfrac{2}{ {( - 2)}^{3} }  = \dfrac{1}{ - 4} < 0

\rm\implies \:f(x) \: is \: maximum \: at \: x = -  2

Hence, f(x) is minimum at x = 2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used :-

Let y = f(x) be a given function.

To find the maximum and minimum value, the following steps are follow :

1. Differentiate the given function.

2. For maxima or minima, put f'(x) = 0 and find critical points.

3. Then find the second derivative, i.e. f''(x).

4. Apply the critical points ( evaluated in second step ) in the second derivative.

5. Condition :-

  • The function f (x) is maximum when f''(x) < 0.

  • The function f (x) is minimum when f''(x) > 0.
Answered by itzMeGunjan
6

Question :-

  • Local minima for f(x)= \frac{x}{2}+ \frac{2}{x}occurs at ?

Solution :-

 \:  \:  \:  \:  :  \rightarrow \mathtt{f(x) =  \frac{x}{2} +  \frac{2}{x}  } \\  \:  \:  \:  \:  \:  \:  \:  :  \rightarrow \mathtt{f {}^{′}(x) =  \frac{1}{2}  + 2x -  \frac{1}{ {x}^{2} }  } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  :  \longmapsto \mathtt{ {f}^{′} (x) =  \frac{1}{2}   -  \frac{2}{x {}^{2} } } \\  \implies \mathtt{ \frac{ {x}^{2} - 4 }{2 {x}^{2} } }

Now f ' (x) = 0 which is implies

  \:  \:  \:  \:  \:  \: :  \implies \mathtt{ \frac{ {x}^{2}  - 4}{ {2x}^{2} } = 0 } \\     : \rightarrow \mathtt{ {x}^{2}  - 4} \\   \:  \:  \:  \hookrightarrow \boxed{\mathtt{x =± \: 2   }}

So, at x = 2

 \:  \:  \:  \:  \:  \:  \:  \rightarrow \: f \mathtt{(2) =  \frac{2}{2}  +  \frac{2}{2} } \\  \:  \:  \:  \:  \:  \:  \:  \rightarrow \: f \mathtt{(2) = 1 + 1} \\  \:  \:  \:  \:  \:  \:  \hookrightarrow \boxed{ f\mathtt{(2) = 2}}

\red{\bigstar} Local minima is at x = 2 and f(2) = 2 .

Similar questions