Math, asked by rkthogatveer2021, 11 months ago

locate root 3 on the number line​

Answers

Answered by helper2005
3

First draw a number line having points (at least) [0,3]. If we denote the point 0 as “O” and point 1 as “A” then OA will be equal to 1 unit. Then at point A draw a perpendicular of length AB=1 unit ( equal to the distance from 0 to 1 in the number line i.e. OA). And join the points O and A, so that OABis a right angled triangle. Then by pythagoras theorem,

OB^2=OA^2+AB^2

=> OB=sqrt (1^2+1^2)

=>OB = root 2

Now, again draw a perpendicular at point B of length BC= 1 unit and join the points O and C. Again by pythagoras theorem we get OC = root 3. Then by compass taking radius =OC, draw an arc so that it cuts the number line at D. Then the distance OD will be the square root of 3.

please Mark as brainliest

Attachments:
Answered by Anonymous
1

⦁First construct the BD of unit length perpendicular to OB.

⦁Then apply the Pythagoras theorem \rm{OD = \sqrt{(\sqrt{2})^{2} + 1^{2} = \sqrt{3}}}

⦁We can locate \rm{\sqrt{3}} on number line by using a compass.

⦁We know that, O is the center and radius OD. Now let's draw an arc which intersects the number line at the point Q.

⦁Therefore, now the point Q = \rm{\sqrt{3}}

Similar questions