Math, asked by vishwakrmaaadarsh079, 5 months ago

locate the points (5,0),(0,5),(2,5),(5,2),(-3,5),(-3,-5),(5,-3) and (6,1) in the carstesian plane​

Answers

Answered by SarcasticL0ve
15

AnswEr:

⠀⠀⠀

\setlength{\unitlength}{2.5mm}\begin{picture}(10,10)\multiput(0,0)(2,0){21}{\line(0,1){40}}\multiput(0,0)(0,2){21}{\line(1,0){40}}\linethickness{0.45mm}\put(20,20){\vector(2,0){18}}\put(20,20){\vector(-2,0){18}}\put(20,20){\vector(0,2){18}}\put(20,20){\vector(0,-2){18}}\multiput(19.35,6)(0,2){15}{\line(1,0){1.3}}\multiput(6,19.35)(2,0){15}{\line(0,1){1.3}}\put(20,20){\circle*{1}}\put(20,30){\circle*{1.1}}\put(16,28){\footnotesize\sf (0, 5)}\put(14,10){\circle*{1.1}}\put(12,7.5){\footnotesize\sf (-3, -5)}\put(30,14){\circle*{1.1}}\put(28,11){\footnotesize\sf (5, -3)}\put(21,37){\sf Y}\put(21,2){\sf Y'}\put(2,21){\sf X'}\put(37,21){\sf X}\put(30,20){\circle*{1}}\put(32,22){\circle*{1}}\put(24,30){\circle*{1.1}}\put(30,24){\circle*{1.1}}\put(27,26){\footnotesize\sf (5, 2)}\put(14,30){\circle*{1.1}}\put(12,32){\footnotesize\sf (-3, -5)}\put(27,26){\footnotesize\sf (5, 2)}\put(33,23){\footnotesize\sf(6, 1)}\put(29,17){\footnotesize\sf (5, 0)}\put(22,31){\footnotesize\sf (2, 5)}\end{picture}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀

\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:CARTESIAN\:\:PLANE\::\:\bigstar}}}} \\  \\

Cartesian plane is divided into four quadrants by two axes perpendicular to each other, labelled as the x-axis (horizontal line) and the y-axis(vertical line).

  • Quadrant 1 : (+ x, + y)
  • Quadrant 2 : (- x, + y)
  • Quadrant 3 : (- x, - y)
  • Quadrant 4 : (+ x, - y)
Attachments:
Answered by Anonymous
13

{\Large{\bold{\sf{\underbrace{Answer}}}}}

\setlength{\unitlength}{2.5mm}\begin{picture}(10,10)\multiput(0,0)(2,0){21}{\line(0,1){40}}\multiput(0,0)(0,2){21}{\line(1,0){40}}\linethickness{0.45mm}\put(20,20){\vector(2,0){18}}\put(20,20){\vector(-2,0){18}}\put(20,20){\vector(0,2){18}}\put(20,20){\vector(0,-2){18}}\multiput(19.35,6)(0,2){15}{\line(1,0){1.3}}\multiput(6,19.35)(2,0){15}{\line(0,1){1.3}}\put(20,20){\circle*{1}}\put(20,30){\circle*{1.1}}\put(16,28){\small\sf (0, 5)}\put(14,10){\circle*{1.1}}\put(12,7.5){\small\sf (-3 , -5)}\put(30,14){\circle*{1.1}}\put(28,11){\small\bf (5 , -3)}\put(21,37){\bf Y}\put(21,2){\bf Y'}\put(2,21){\bf X'}\put(37,21){\sf X}\put(30,20){\circle*{1}}\put(32,22){\circle*{1}}\put(24,30){\circle*{1.1}}\put(30,24){\circle*{1.1}}\put(27,26){\small\bf (5 , 2)}\put(14,30){\circle*{1.1}}\put(12,32){\small\bf (-3 , -5)}\put(27,26){\small\bf (5 , 2)}\put(33,23){\small\bf(6 , 1)}\put(29,17){\small\bf (5 , 0)}\put(22,31){\small\bf (2 , 5)}\end{picture}

{\Large{\bold{\sf{\underbrace{More \: information}}}}}

{\footnotesize{\bold{\red{\sf{What \: is \: cartesian \: plane?}}}}}

Cartesian plane is defined by two perpendicular number lines. These lines are as x axis and y axis. The x axis is horizontal and the y axis is vertical.

{\footnotesize{\bold{\red{\sf{Cartesian \: plane \: quadrants}}}}}

  • ( + ; + )
  • ( − ; + )
  • ( − ; − )
  • ( + ; – )

Request :

Please see this answer from web browser or chrome.

Similar questions