Locus of centroid of the triangle whose vertices are (acost , asint) , (bsint, - bcost) and ( 1, 0) where t is a parameter , is
(a) (3x + 1) ² + ( 3y)² = a²-b²
(b) (3x - 1)² +( 3y)² = a² - b²
(c) (3x -1)² + (3y)² = a² + b²
(d) (3x +1)² +( 3y)² = a²+b²
Answers
Answered by
8
Hello !!
Solution
We know that formula of centroid
X = x1 + X2 + X3 /3 , Y = y1 + y2+ y3/3
•°• X = acost + bsint + 1/3 _____(1)
=> acost + bsint = 3X- 1
similarly ,
asint - bcost = 3Y _______(2)
squaring and adding (1) and (2) equation
(3x - 1 ) ² + ( 3y)² = (asint - bcost )² + (acost+ bsint)²
= (3x - 1)² + (3y)² = a² + b² .
Hence , ur option
is correct option
____________________________
Hope it helps you !!! #Muskraj❤❤
Solution
We know that formula of centroid
X = x1 + X2 + X3 /3 , Y = y1 + y2+ y3/3
•°• X = acost + bsint + 1/3 _____(1)
=> acost + bsint = 3X- 1
similarly ,
asint - bcost = 3Y _______(2)
squaring and adding (1) and (2) equation
(3x - 1 ) ² + ( 3y)² = (asint - bcost )² + (acost+ bsint)²
= (3x - 1)² + (3y)² = a² + b² .
Hence , ur option
is correct option
____________________________
Hope it helps you !!! #Muskraj❤❤
baljeet72:
hi
Similar questions