locus of point equidistant from A point form
Answers
Answered by
0
Answer:
Let the point be P(x,y)
Then
(x−(a+b))
2
+(y−(a−b))
2
=
(x−(a−b))
2
+(y−(a+b))
2
(x−(a+b))
2
+(y−(a−b))
2
=(x−(a−b))
2
+(y−(a+b))
2
(x−(a+b))
2
−(x−(a−b))
2
=(y−(a+b))
2
−(y−(a−b))
2
(2x−2a)(a−b−(a+b))=(2y−2a)(a−b−(a+b))
2(x−a)(−2b)=2(y−a)(−2b)
x−a=y−a
or
x−y=0 is the required equation.
Was this answer helpful?
Similar questions