Math, asked by ashvithreddy6, 1 month ago

Locus of point of intersection of the lines x sinetheta - y costheta = 0 and ax sectheta- b ycosectheta = a²-b²

plz answer me whole method​

Answers

Answered by senboni123456
1

Step-by-step explanation:

Given lines are

 \tt \: x  \: sin( \theta) - y \: cos (\theta) = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \tt ax \: sec (\theta) - by \: cosec (\theta) =  {a}^{2}  -  {b}^{2}

Now,

From 1st equation,

 \tt \: x = y \: cot( \theta)

put this in 2nd equation,

 \tt ay \: cot (\theta) \: sec (\theta) - by \: cosec (\theta) =  {a}^{2}  -  {b}^{2}

 \tt  \implies \: ay \: cosec (\theta) - by \: cosec (\theta) =  {a}^{2}  -  {b}^{2}

 \tt  \implies \: (a - b)y \: cosec (\theta) =  {a}^{2}  -  {b}^{2}

 \tt  \implies \: y \: cosec (\theta) =  a   + b

 \tt  \implies \: y  = (a + b)sin (\theta)

So,

 \tt \: x = (a + b) sin( \theta)  cot( \theta)

 \tt \:  \implies \: x = (a + b)   cos( \theta)

Required locus

 \sf\large \color{red} {x}^{2}  +  {y}^{2}  = (a + b)^{2}

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:xsin\theta  - ycos\theta  = 0

\rm :\longmapsto\:xsin\theta =  ycos\theta

\rm :\longmapsto\:x = \dfrac{ycos\theta }{sin\theta }  -  -  -  - (1)

Also, given that,

\rm :\longmapsto\:axsec\theta  - bycosec\theta  =  {a}^{2} -  {b}^{2}

On substituting the value of x, we get

\rm :\longmapsto\:a \times \dfrac{ycos\theta }{sin\theta } \times  sec\theta  - bycosec\theta  =  {a}^{2} -  {b}^{2}

We know,

\boxed{ \bf{ \:sec\theta  =  \frac{1}{cos\theta }}}

So, on substituting this, value we get

\rm :\longmapsto\:a \times \dfrac{ycos\theta }{sin\theta } \times   \dfrac{1}{cos\theta }   - bycosec\theta  =  {a}^{2} -  {b}^{2}

\rm :\longmapsto\:a \times \dfrac{y}{sin\theta } - bycosec\theta  =  {a}^{2} -  {b}^{2}

\rm :\longmapsto\:a \times \dfrac{y}{sin\theta } - by \times  \dfrac{1}{sin\theta }   =  {a}^{2} -  {b}^{2}

\rm :\longmapsto\:\dfrac{y}{sin\theta }(a - b) =  {a}^{2} -  {b}^{2}

\rm :\longmapsto\:\dfrac{y}{sin\theta }(a - b) =  (a - b)(a + b)

\rm :\longmapsto\:\dfrac{y}{sin\theta }=  a + b

\bf\implies \:sin\theta  = \dfrac{y}{a + b}  -  -  -  - (2)

On substituting the value in equation (1),

\rm :\longmapsto\:x = \dfrac{ycos\theta (a + b)}{y }

\rm :\longmapsto\:x = (a + b)cos\theta

\bf\implies \:cos\theta  = \dfrac{x}{a + b}  -  -  -  - (3)

On squaring equation (2) and (3),and add we get

\rm :\longmapsto\: {sin}^{2}\theta  +  {cos}^{2}\theta  =  {\bigg[\dfrac{x}{a + b} \bigg]}^{2} + {\bigg[\dfrac{y}{a + b} \bigg]}^{2}

\bf\implies \:  {\bigg[\dfrac{x}{a + b} \bigg]}^{2} + {\bigg[\dfrac{y}{a + b} \bigg]}^{2}  = 1

OR

\bf\implies \: {x}^{2} +  {y}^{2}  =  {(a + b)}^{2}

  • This is the required locus.

Similar questions