Math, asked by karthikeya7569191888, 9 months ago

log 0.5 (x^2-5x+6)>-1

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{log\,_{0.5}(x^2-5x+6)\;>\;-1}

\underline{\textbf{To find:}}

\textsf{Solution set of the given inequality}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{log\,_{0.5}(x^2-5x+6)\;>\;-1}

\textsf{This can be written as}

\mathsf{0.5^{log\,_{0.5}(x^2-5x+6)}\;>\;0.5^{-1}}

\mathsf{Using,}\;\boxed{\mathsf{a^{log\,_aN}=N}}

\mathsf{x^2-5x+6\;>\;\dfrac{1}{0.5}}

\mathsf{x^2-5x+6\;>\;2}

\mathsf{x^2-5x+4\;>\;0}

\mathsf{x^2-4x-x+4\;>\;0}

\mathsf{x(x-4)-1(x-4)\;>\;0}

\mathsf{(x-1)(x-4)\;>\;0}

\implies\mathsf{x\,\in\,(-\infty,1)\;\;or\;\;(4,\infty)}

\therefore\mathsf{Solution\;set\;is\;(-\infty,1){\cup}(4,\infty)}

Answered by bhumigaik
0

Answer:

  • X€ [1,4]
  • Step-by-step explanation:
  • Step-by-step explanation:X>0
  • Step-by-step explanation:X>0base <1
  • Step-by-step explanation:X>0base <1X2 -5x+6<(0.5)-1
  • Step-by-step explanation:X>0base <1X2 -5x+6<(0.5)-10.5^1
  • Step-by-step explanation:X>0base <1X2 -5x+6<(0.5)-10.5^1X2 -5x+6<2
  • Step-by-step explanation:X>0base <1X2 -5x+6<(0.5)-10.5^1X2 -5x+6<26-2=4
  • Step-by-step explanation:X>0base <1X2 -5x+6<(0.5)-10.5^1X2 -5x+6<26-2=44X2 -5+4<0
  • Step-by-step explanation:X>0base <1X2 -5x+6<(0.5)-10.5^1X2 -5x+6<26-2=44X2 -5+4<0( X-1 ) ( X -4)
  • Step-by-step explanation:X>0base <1X2 -5x+6<(0.5)-10.5^1X2 -5x+6<26-2=44X2 -5+4<0( X-1 ) ( X -4) X€ [ 1,4 ]

Similar questions