Math, asked by Akshayroy7410, 1 year ago

Log (10)25+log (10)4=log (5)25

Answers

Answered by MaheswariS
3

\text{consider,}

log_{10}25+log_{10}4

\text{Using, product rule of logarithm }

\boxed{\bf\log_aM+log_aN=log_aM\,N}

=log_{10}(25{\times}4)

=log_{10}100

=log_{10}10^2

\text{Using, power rule of logarithm }

\boxed{\bf\log_aM^n=n\,log_aM}

=2\log_{10}10

\text{Using, $\bf\,log_{a}a=1$}

=2(1)

=2\,log_{5}5

=log_{5}5^2

=log_{5}25

\implies\boxed{\bf\,log_{10}25+log_{10}4=log_{5}25}

Answered by Thebrain0078462
1

L.H.S; I RHS;

Log(10)25+Log(10)4. I Log(5)(25)

=Log(10)(25x4) I =Log(5)(5)^2

=Log(10)(100) I =2 Log (5)5

=Log(10)(10)^2. I =2

=2 Log (10)10. I

=2

L.H.S=R.H.S

PROVED;

Hope it helps.

Similar questions