log 10 5+log 10(5x+1)-1=log 10(x+5)
Answers
Answer:
★Question★
Solve for x :-
★Answer★
★Given :-
★To find :-
- Value of x
★Formula used :-
★Solution:-
★ On comparing, we get
_____________________________________________
Step-by-step explanation:
★Given :-
\bf \: log_{10}(5) + log_{10}(5x + 1) - 1 = log_{10}(x + 5)log
10
(5)+log
10
(5x+1)−1=log
10
(x+5)
★To find :-
Value of x
★Formula used :-
\bf \:loga + logb = logabloga+logb=logab
\bf \: log_{10}(10) = 1log
10
(10)=1
★Solution:-
\bf \: log_{10}(5) + log_{10}(5x + 1) - 1 = log_{10}(x + 5)log
10
(5)+log
10
(5x+1)−1=log
10
(x+5)
\bf \: log_{10}(5) + log_{10}(5x + 1) = log_{10}(x + 5) + 1log
10
(5)+log
10
(5x+1)=log
10
(x+5)+1
\bf \: log_{10}(5) + log_{10}(5x + 1) = log_{10}(x + 5) + log_{10}(10)log
10
(5)+log
10
(5x+1)=log
10
(x+5)+log
10
(10)
\bf\implies \: log_{10}(5(5x + 1)) = log_{10}(10(x + 5))⟹log
10
(5(5x+1))=log
10
(10(x+5))
★ On comparing, we get
\bf\implies \:5(5x + 1) = 10(x + 5)⟹5(5x+1)=10(x+5)
\bf\implies \:25x + 5 = 10x + 50⟹25x+5=10x+50
\bf\implies \:25x - 10x = 50 - 5⟹25x−10x=50−5
\bf\implies \:15x = 45⟹15x=45
\bf\implies \:x = 3⟹x=3