Computer Science, asked by ruchitsheth9999, 4 months ago

Log 10^800 = 2 + 3. Log 10^ 2​

Answers

Answered by anindyaadhikari13
10

\textsf{\large{\underline{Solution}:}}

We have to prove the given equality.

Taking LHS, we get:

 \rm =  log_{10}(800)

 \rm =  log_{10}(8 \times 100)

 \rm =  log_{10}(100) +  log_{10}(8)

 \rm =  log_{10}( {10}^{2} ) +  log_{10}( {2}^{3} )

 \rm =  2 \log_{10}(10) +  3 \log_{10}(2 )

 \rm =  2  \times 1 +  3 \log_{10}(2 )

 \rm =  2 +  3 \log_{10}(2 )

 \rm =  RHS

Hence Proved..!!

\textsf{\large{\underline{Learn More}:}}

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }

Similar questions