Math, asked by rishumuskan100, 9 months ago

log 12 base 3 divided log 3 base 36 - log 4 base 3 divided log 3 base 108​

Answers

Answered by MaheswariS
24

\underline{\textsf{Given:}}

\mathsf{\dfrac{log_{3}12}{log_{36}3}-\dfrac{log_{3}4}{log_{108}3}}

\underline{\textsf{To find:}}

\textsf{The value of the given expression}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{\dfrac{log_{3}12}{log_{36}3}-\dfrac{log_{3}4}{log_{108}3}}

\textsf{Using}\;\boxed{\mathsf{log_ab=\dfrac{1}{log_ba}}}

\mathsf{=log_{3}12\;log_{3}36-log_{3}4\;log_{3}108}

\mathsf{=log_{3}(4{\times}3)\;log_{3}(4{\times}9)-log_{3}4\;log_{3}(4{\times}27)}

\textsf{Using product rule of logarithm}

\mathsf{=(log_{3}4+log_{3}3)(log_{3}4+log_{3}9)-log_{3}4(log_{3}4+log_{3}27)}

\mathsf{=(log_{3}4+log_{3}3)(log_{3}4+log_{3}3^2)-log_{3}4(log_{3}4+log_{3}3^3)}

\textsf{Using power rule of logarithm}

\mathsf{=(log_{3}4+log_{3}3)(log_{3}4+2\,log_{3}3)-log_{3}4(log_{3}4+3\,log_{3}3)}

\mathsf{=(log_{3}4+1)(log_{3}4+2(1))-log_{3}4(log_{3}4+3(1))}

\mathsf{=(log_{3}4+1)(log_{3}4+2)-log_{3}4(log_{3}4+3)}

\mathsf{=(log_{3}4)^2+3\,log_{3}4+2)-((log_{3}4)^2+3\,log_{3}4)}

\mathsf{=(log_{3}4)^2+3\,log_{3}4+2-(log_{3}4)^2-3\,log_{3}4}

\mathsf{=2}

\implies\boxed{\mathsf{\dfrac{log_{3}12}{log_{36}3}-\dfrac{log_{3}4}{log_{108}3}=2}}

Find more:

x^2 + y^2= 25xy, then prove that 2 log(x+y)=3log3+logx+logy

https://brainly.in/question/477579

If 2log(x-y)=logx +logy, prove that 2log(x+y)= log5+logx +logy

https://brainly.in/question/16912979

Answered by AryaChawale10th
1

Answer:

Your Answer Is 2

Hope It Helped.

Attachments:
Similar questions