Math, asked by yeasin7674, 9 months ago

Log 125/64 base 4/5 find ts value?

Answers

Answered by DrNykterstein
5

</p><p></p><p> \sf \rightarrow \quad  log_{ \frac{4}{5} }  \:  \frac{125}{64}  \\  \\ \sf \rightarrow \quad   log_{ \frac{4}{5} } \: 125 -  log_{ \frac{4}{5} }  \: 64 \\  \\ \sf \rightarrow \quad  \frac{ log_{5} \: 125}{ log_{5} \:  \frac{4}{5}  }  -  \frac{ log_{4} \: 64 }{ log_{4} \:  \frac{4}{5}  }  \\  \\ \sf \rightarrow \quad  \frac{3}{ log_{5} \: 4 -  log_{5} \: 5 }  -  \frac{3}{ log_{ 4 } \:4 -  log_{4} \: 5  }  \\  \\ \sf \rightarrow \quad  \frac{3}{ log_{5} \: 4 - 1 }  -  \frac{3}{1 -  log_{4} \: 5 }  \\  \\ \sf \rightarrow \quad  \frac{3 log_{4} \: 5 }{1 -  log_{4} \: 5 }  -  \frac{3}{1 -  log_{4} \: 5 }  \\  \\ \sf \rightarrow \quad  \frac{3 log_{4} \: 5 - 3 }{1 -  log_{4} \: 5 }  \\  \\ \sf \rightarrow \quad  \frac{ - 3 \cancel{(1 -  log_{4} \: 5) }}{ \cancel{(1 -  log_{4} \: 5 )}} \\  \\  \sf \rightarrow \quad  - 3</p><p>

Answered by sourasghotekar123
1

Answer:

log_{\frac{4}{5} } \frac{125}{64} =-3

Step-by-step explanation:

log_{\frac{4}{5} } (\frac{125}{64} )\\\\=log_{\frac{4}{5} } (\frac{5}{4} )^{3}                                             (log a^{n} =nlog a)\\\\=3log_{\frac{4}{5} } (\frac{5}{4} )\\                                  \\(log_{a} b= logb/loga)                                     \\\\=3\frac{log_{\frac{5}{4} } }{log_{\frac{4}{5} } } \\               (log\frac{a}{b} =log a-log b)\\\\=3\frac{log5-log4}{log4-log5} \\\\=-3\frac{(log4-log5)}{(log4-log5)} \\\\=-3

log_{\frac{4}{5} }\frac{125}{64} =-3

#SPJ2

Similar questions