Math, asked by manvendra5876, 3 months ago

log 125 + log 8 =x. find x​

Answers

Answered by gothwalshakuntla7349
0

Answer:

133 is the correct answer I hope it helps you.follow

Step-by-step explanation:

125+8=x

133=x

Answered by mathdude500
1

\large\underline{\sf{Given- }}

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \:  log(125)  +  log(8)  = x

\large\underline{\sf{To\:Find - }}

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \sf \: value \: of \: x

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \underline{ \boxed{ \bf log(x)  +  log(y)  =  log(xy)}}

 \underline{ \boxed{ \bf log( {x}^{y} ) = y log(x)}}

 \underline{ \boxed{ \bf log( {10}^{x} )  = x}}

\large\underline{\sf{Solution-}}

↝ Given that

\rm :\longmapsto\: log(125)  +  log(8)  = x

\rm :\longmapsto\:x =  log(125 \times 8)

\rm :\longmapsto\:x =  log(1000)

\rm :\longmapsto\:x =  log( {10}^{3} )

\bf\implies \:x = 3

\overbrace{ \underline { \boxed { \bf \therefore \: The \: value \: of \: x\: is \:3}}}

Additional Information :-

 \underline{ \boxed{ \bf log(x)  -  log(y) =   log( \frac{x}{y} )}}

 \underline{ \boxed{ \bf log_{x}(y)  = \dfrac{1}{ log_{y}(x) } }}

 \underline{ \boxed{ \bf log(1) = 0}}

 \underline{ \boxed{ \bf log(10)  = 1}}

 \underline{ \boxed{ \bf {y}^{ log_{y}(x) }  = x}}

 \underline{ \boxed{ \bf {e}^{logx}  = x}}

Similar questions