Math, asked by nayalsyed, 1 year ago

log 128 to the base 8
a)7/3 b)16 c)3/7 d)1/16

Attachments:

Answers

Answered by Anonymous
28
Log8128=Log(128) ÷ Log(8)

Log(128)= 2.10720996965

Log(8)=0.903089986992

Log8128=2.10720996965 ÷ 0.903089986992

Ans=2.33333333333

It means 1 option is right
Answered by jitumahi435
65

Given,

\log_8 128

We have to find, the value of \log_8 128 is:

Solution:

\log_8 128

= \log_8 (64\times 2)

Using the logarithm identity:

\log (a\times b) = \log a + \log b

= \log_8 64+\log_8 2

= \log_8 8^2+\log_{2^3} 2

Using the logarithm identity:

\log a^b = b\log a and

\log_{a^c} a = \dfrac{1}{c} \log_aa

= 2\log_8 8+\dfrac{1}{3} \log_{2} 2

= 2 + \dfrac{1}{3} [ ∵ \log_{a} a = 1]

= \dfrac{6+1}{3}

= \dfrac{7}{3}

\log_8 128 = \dfrac{7}{3}

Thus, the required "option a) \dfrac{7}{3}" is correct.

Similar questions