Math, asked by bunnymaniraj1311, 1 year ago

Log_2[3.sin50/cos40+5.cosec40/sec50.cosec40]

Answers

Answered by Anonymous
6

Answer:

\bold\red{Value = 3}

Step-by-step explanation:

The correct Question is :-

 log_{2}(3 \times  \frac{ \sin(50) }{ \cos(40) }  + 5 \times  \frac{ \csc(40) }{ \sec(50) } )

Now, we know that,

sinß = cos (90-ß)

=> sin 50 = cos (90-50) = cos 40

and,

secß = cosec (90-ß)

=> sec 50 = cosec (90-50) = cosec 40

So, putting these values in given Question,

we get,

 =   log_{2}(3 \times  \frac{ \sin(50) }{ \sin(50) } + 5 \times  \frac{ \sec(50) }{ \sec(50) }  )   \\  \\  =  log_{2}(3 \times 1 + 5 \times 1)  \\  \\  =  log_{2}(3 + 5)  \\  \\  =   log_{2}(8)   \\  \\  =  log_{2}( {2}^{3} )  \\  \\  = 3 \times  log_{2}(2)  \\  \\  = 3 \times 1 \\  \\  = 3

Hence, the value of log is 3

Concepts Used :-

(1) \:  \:  log_{a}( {b}^{m} )  = m \times  log_{a}(b)  \\  \\ (2) \:  \:  log_{a}(a)  \:  = 1

Similar questions